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Cytochromes P450 3A4, 2D6, and 2C9 metabolize a large fraction of drugs. Knowing where these enzymes
will preferentially oxidize a molecule, the regioselectivity, allows medicinal chemists to plan how best to
block its metabolism. We present QSAR-based regioselectivity models for these enzymes calibrated against
compiled literature data of drugs and drug-like compounds. These models are purely empirical and use only
the structures of the substrates, in contrast to those models that simulate a specific mechanism like hydrogen
radical abstraction, and/or use explicit models of active sites. Our most predictive models use three substructure
descriptors and two physical property descriptors. Descriptor importances from the random forest QSAR
method show that other factors than the immediate chemical environment and the accessibility of the hydrogen
affect regioselectivity in all three isoforms. The cross-validated predictions of the models are compared to
predictions from our earlier mechanistic model (Singh et al.J. Med. Chem.2003, 46, 1330-1336) and
predictions from MetaSite (Cruciani et al.J. Med. Chem.2005, 48, 6970-6979).

Introduction

Oral bioavailability of drugs depends largely on their ability
to withstand degradation by intestinal and hepatic enzymes
during “first-pass” metabolism. One important class of enzymes
is the cytochromes P450 (CYPs). These are heme-containing
enzymes that catalyze a number of chemical changes: oxidation,
dealkylation, desaturation, and so on.1-4 All probably involve
the transfer of the oxygen radical from the heme iron of the
enzyme to the molecule as one of the steps. Knowing where a
molecule would be preferentially oxidized, that is, the regiose-
lectivity, by a particular CYP would give medicinal chemists
insight on where to block the metabolism and make their drug
candidates more stable in vivo. Normally the regioselectivity
of CYP-mediated biotransformation is determined experimen-
tally by metabolite identification techniques (for instance, ref
2). However, all such experimental techniques are time- and
labor-intensive, and a computational model for regioselectivity
could allow chemists to make rational decisions more quickly.

A number of models for predicting regioselectivity by CYPs
have been proposed,5-10 and a few commercial systems for
doing so have been released. It should be noted that these
models usually do not predict whether a molecule will be a
substrate for a particular CYP, only where the oxidation will
likely occur assuming it is a substrate. Of the CYP isoforms,
CYPs 3A4, 2D6, and 2C9 are probably the most important in
metabolizing drugs and drug-like molecules.1,3 In some CYPs
like 2D6, it has been proposed that there is a “pharmacophore”
(i.e., a cation in molecules oxidized by 2D6) that controls
regioselectivity by orienting the molecule in the active site such
that certain atoms are closer to the heme oxygen (reviewed by
Ekins et al.11). In contrast, others like 3A4 do not have an
obvious pharmacophore.4

Previous work from this laboratory (Singh et al.7) addressed
metabolism by CYP 3A4. That model assumed, based on the

observation that 3A4 lacks substrate specificity, that orientation
effects from the 3A4 active site are negligible and that
regioselectivity depends primarily on the energy necessary to
remove a hydrogen radical (the dehydrogenation energy) from
a particular atom, with the stipulation that only those hydrogens
with sufficient solvent accessible surface area (g8 Å2) could
be attacked. We used AM1 molecular orbital calculations to
calculate the dehydrogenation energy. Because even semiem-
pirical calculations like AM1 would take too long to make a
rapid prediction system, we estimated the AM1 dehydrogenation
energy with a QSAR model based on the local chemical
environment of the atoms.

The Singh et al. model is modestly predictive of 3A4 regio-
selectivity, but it was clear from the outset that this model has
some serious limitations. First and most importantly, given that
it depended only on dehydrogenation energy, it can address
oxidations only where removal of a hydrogen radical is the pro-
posed mechanism, that is, sp3 carbons with at least one attached
hydrogen, and cannot at all address oxidations at aromatic
carbons, sulfurs, and so on. Second, it was clear that dehydro-
genation energies sometimes give systematically wrong answers
for some sp3 carbons. For instance, inN-methylpiperidines, the
observed action of CYP 3A4 is to almost always oxidize the
methyl, resulting in anN-dealkylation, while the AM1 dehy-
drogenation energy always suggests that the piperidine ring
carbons adjacent to the N would be slightly more susceptible.
However, due to our small sample size at the time (only about
50 examples), we could not confidently add any correction fac-
tors to our model. Third, the use of a sharp cutoff on the solvent
accessible surface area makes the results sensitive to the starting
conformation; sometimes a particular carbon would be marked
as a site of oxidation, sometimes not, depending on whether
the area of the hydrogen was just above or below the cutoff.
Finally, we were not comfortable with completely ignoring
orientation effects after crystal structures of CYP 3A4s became
available,12,13 and it became clear that the active site is not so
large or open as to permit free tumbling of a substrate, or at
least rapid exchange of bound with free substrate, as would be
required for orientation effects to be neglected.
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Almost all models to date of CYP regioselectivity are
mechanism-based. That is, one tries to simulate the chemical
steps involved with oxidation or at least the rate-limiting step
(e.g., removing the H radical). Mechanism-based models are
appealing because they appear to be general and require the
least knowledge beforehand. For instance, molecular orbital
calculations of dehydrogenation energy ought to give valid
predictions for any molecule. However, in practice, things are
never so simple. For instance, the oxidation at sp3 carbons
probably involves the removal of a hydrogen radical as the
product-determining step, but oxidation at aromatic rings
probably occurs by a different mechanism, one proposal being
the addition of a hydroxy radical.5 One must find a way to scale
the relative importance of the two (or more) mechanisms for a
prediction. Also, to match the experiment, one almost always
has to add other effects that are not local to the atom. Previous
efforts developing CYP 3A4 models by one of us (K.R.K.,
unpublished work) suggested other factors, for example, relative
position to polar functionalities, whether the atom was part of
a piperidine or piperazine ring and so on, were required to make
the predicted and observed regioselectivity for 3A4 agree. When
empirically calibrated corrections are added on top of the
original mechanism-based parameters, it is not clear that such
an approach will result in a better model than that obtained by
fitting parameters directly to experimental data and ignoring
mechanistic considerations altogether.

In this paper we present QSAR-based regioselectivity models
for human CYPs 3A4, 2D6, and 2C9 based on data in the
literature plus some proprietary in-house data (for 3A4). The
intention is to cover the most commonly observed potential sites
of oxidation (sp3 carbons, sp2 carbons, sulfurs, etc.). We use
descriptors intrinsic only to the candidate substrates and include
no information about the active sites of the CYPs. We are able
to show that the QSAR models make cross-validated predictions
better than the predictions from Singh et al. and at least as good
as the predictions from MetaSite, a more mechanism-based
method of predicting regioselectivity. We also apply the models
to a small set of compounds not in the original set.

Methods

Datasets.Even more than for the Singh et al. model, we depend
here on regioselectivity data in the literature. Gathering the citations
was greatly aided by two licensed databases, the Metabolite Data-
base from Molecular Design Limited (www.mdli.com) and the
Human Drug Metabolizing Enzyme Database from Fujitsu (www.

fqs.fujitsu.com/ccs/ASP_service_eng/ASP_ADMEdatabase/
ASP_ADMEdatabase_eng.html). For each molecule, the specific
mechanism for oxidation had to be established as native human
CYP3A4, 2D6, or 2C9 and the exact site(s) of oxidation of the
molecule had to be known. The list of citations is provided as
Supporting Information. The final “calibration” sets consisted of
316 molecules for 3A4 (305 from the literature plus 11 proprietary
molecules), 124 molecules for 2D6, and 92 molecules for 2C9. The
structures of the molecules (minus the proprietary ones for 3A4)
are also in Supporting Information. One concern is that the
molecules in the training set be diverse. Elucidation of metabolic
products is difficult and time-consuming, so we are likely to see
literature data on a limited number of molecules, drugs or drug
candidates far along in their development, which tend to occur in
a limited number of families. However, as will be shown, no family
dominates any of the calibration sets.

Some months after we generated our original models, during
the review process for the first submitted version of this manuscript,
we rechecked the literature and found a total of 25 additional
compounds: 19 for 3A4, 10 for 2D6, and 9 for 2C9, with some
overlap. We will call these the “external” sets. The structures of
these are also in Supporting Information.

Sites of Metabolism.In an ideal world, as a QSAR “response”
we would like to have a rate of oxidation for every atom in every
molecule measured under uniform conditions. However, what can
be found in the literature is the elucidation of at most a few
major sites of metabolism per molecule. Sometimes the relative
amounts of the metabolic products are noted in the citation. In the
molecular structure in Supporting Information we have marked
atoms as “1” (primary site), “2” (secondary site), and so on.
Topologically equivalent atoms are marked identically. However,
most of the citations do not contain such detailed information, and
to maximize the number of molecules for our models, we felt it
best to treat atoms as having a binary response: “1” if it was noted
as a major site of metabolism in the citation and “0” if it was not.
We countedN- andO-dealkylations as occurring on the carbon of
the leaving group adjacent to the N or O. There are some rarer
reactions, such as ring openings, replacements ofdS with dO,
and so on. In those cases, the atom was marked that, in the opinion
of the authors of the citation, is most likely to receive an oxygen
radical from the CYP. Table 1 shows the frequencies of the atoms
and observed oxidation sites in the calibration sets divided into
major types

Data of this type have several issues. Foremost is the usual
concern whether data from the literature can be sensibly combined.
In this case, oxidation products of different molecules are measured
in different labs with different techniques. Also, it is not clear that
the primary oxidation product is given in some citations because
the authors may be trying to identify the CYP responsible for a

Table 1. Frequency of Oxidations in the Calibration Sets

3A4 2D6 2C9

atom type

total
nonhydrogen

atoms

marked as
oxidation

sites

total
nonhydrogen

atoms

marked as
oxidation

sites

total
nonhydrogen

atoms

marked as
oxidation

sites
sp3C with H
(hydroxylation or
N,O-dealkylation)

2792 432 856 119 456 84

sp2C with H
(hydroxylation)

1817 87 713 55 579 56

-S-, -S(dO)-
(to -S(dO)-, -SO2-)

44 31 14 8 15 8

N in six-membered
aromatic ring
(e.g., pyridine N to N->O)

71 10 19 0 20 1

sp3N (basic)
(N to N->O)

119 6 69 0 10 0

other 3655 12 1009 11 956 3
total 8498 566 2680 193 2036 152
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particular oxidation product without necessarily establishing it as
the primary product. Errors in the structures of oxidation products
and incorrect assignment of oxidation products to a particular CYP
are also possible.

Another major concern is that the data show relative susceptibili-
ties to oxidation of atoms within each individual molecule, but the
meaning of “1” may not be the same between molecules, and it is
not clear that atoms from different molecules can be pooled in a
single training set. For instance, consider a purely aliphatic
compound A with anN-methylpiperidine and a methoxy group.
The N-methyl is established as a site of oxidation (1). The meth-
oxy methyl is not (0). On the other hand, consider a completely
aromatic compound B. One of the aromatic carbons is marked as
the site of oxidation (1), although on an absolute basis, the meth-
oxy methyl group in A is probably much more susceptible than
the aromatic carbon in B. Despite the potential difficulties, how-
ever, we have produced a reasonably self-consistent and predictive
model.

Descriptors.We have examined several descriptors that describe
the local environment around each nonhydrogen atomi in each
molecule. The first types (SS, SS-A, and SS-B) can be called
“detailed substructure descriptors” (SS for “substructure”). Solvent
accessible surface area of hydrogens is obviously important and
is represented by the descriptors HYDROGENAREA and NON-
HYDROGENAREA. The PE (physiochemical environment) and
HYDROPHOBICMOMENT descriptors describe the long-range
environment around atomi. The final descriptor SPAN has to do
with where atomi is placed in a molecule. Only the HYDRO-
PHOBICMOMENT, HYDROGENAREA, and NONHYDRO-
GENAREA require the 3D structure of a molecule; all the others
use the connection table only. Details follow:

(1) SS.This is the nonhydrogen-centric version of the substruc-
ture descriptors introduced in Singh et al.7 to describe local chemical
environments. They have the form ATi, ATi-ATj, ATi-ATj-ATk,
ATi-ATj-ATk-ATm, where ATi is the type of atomi, ATj is the
atom one bond away, ATk is the atom two bonds away, and so on.
Atom i is always the candidate atom for oxidation. Atom type
includes the element, the number of nonhydrogen neighbors, and
the hybridization of the atom. It might also include some special
properties, including what kind of ring the atomi is in: a5, a6 for
five- and six-membered aromatic rings, and A5, A6 for five and
six-membered aliphatic rings; br5, br6 mark bridgehead atoms in
five- and six-membered rings. The PATTY14 notation for defining
these types is in Supporting Information. It is established, because
one can fit and predict AM1 dehydrogenation energies very well
with this type of descriptor,7 that they contain implicit information
about dehydrogenation energy.

(2) SS-A, SS-B.The information in SS can be split into two
separate descriptors, SS-A, including the element/neighbors/
hybridization information, and SS-B, including the special proper-
ties. In the case of SS-B, an atom without any special properties is
labeled “n” (for “none”). Figure 1 shows the substructure descriptors
for a candidate site in a small example molecule.

(3) HYDROGENAREA. As with Singh et al., we use the areas
of attached hydrogens. Not all atomsi have hydrogens but, for the
ones that do, we note the total area of all the hydrogens attached
to atomi (SUM), the mean area (MEAN), and the minimum (MIN)
and maximum (MAX) areas. Again, as in Singh et al., the area of
any given hydrogen is an average over 25 conformations generated
by our Flexibase procedure15 starting from the CORINA16 confor-
mation. A variation of this is to use the area of a single CORINA
conformation.

(4) NONHYDROGENAREA. This is the same as the above,
except that one looks at the areas of nonhydrogens once the
hydrogens are removed from the structure.

(5) PE. These are of the form AT_d, where d is the through-
bond distance to atomi and AT may be one of the following: 1)
cation, 2) anion, 3) neutral H-bond donor, 4) neutral H-bond
acceptor, 5) donor/acceptor, 6) hydrophobe, and 7) none of
the above. Definitions of these types are in ref 14. Figure 1 shows
the PE descriptors for a candidate site in the example molecule.

(6) HYDROPHOBICMOMENT. Given a CORINA conforma-
tion, one calculates the hydrophobic moment vector of a molecule
(analogous with the dipole moment, with atom type replacing
charge; type “6” above is hydrophobic). We note the length of the
hydrophobic moment, the projection of atomi on the hydrophobic
moment, and the projection normalized by the length. This is
averaged over 25 conformations. The idea of these descriptors is
to distinguish atoms at the hydrophobic ends of molecules versus
those at the hydrophilic end under the hypothesis that the
hydrophobic ends are preferentially oxidized.

(7) SPAN.This is a measure of whether the candidate oxidation
site is at the end or the middle of a molecule in a topological sense.
One notes the longest through-bond distance in the molecule,
MAXDISTMOL. One then notes the longest distance from atomi
to any other atom in the molecule, DISTFURTHESTNEIGHBOR.
The descriptor RATIO) DISTFURTHESTNEIGHBOR/MAXDIST-
MOL is 0.5 if atomi is exactly at the middle of the molecule and
1.0 if the atomi is at the end. Figure 1 illustrates this for one
candidate site.

Figure 1. The topological substructure descriptors (SS, SS-A, SS-B)
and physiochemical environment (PE) descriptors for an atom (indicated
by arrow) in an example molecule. The number near each atom is the
physiochemical type (1) cation, 3) H-bond donor, 6) hydrophobe,
7 ) other). Also indicated is the ratio for the SPAN descriptor that
determines whether an atom is at the end or middle of a molecule based
on its topology.
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Descriptors were generated using our in-house modeling infra-
structure MIX.

Random Forest QSAR Method. Random forest17 is an en-
semble recursive partitioning method that constructs predictions by
averaging over multiple “trees”. Each tree in the forest is constructed
from a different bagged subset of the training set, and at each branch
point of the tree, the method chooses from a random subset of the
descriptors. We used the R implementation of random forest (http://
cran.r-project.org/src/contrib/Descriptions/randomForest.html). In
our experience random forest gives the best cross-validated predic-
tions compared to other major QSAR methods (partial-least-squares,
k-nearest neighbors, neural networks, etc.), and this is true for our
particular dataset as well. Recursive partitioning methods like
random forest have the advantage that not all the cases have to be
fit by one model (e.g., sp3 carbons and sp2 carbons can have their
own set of rules), coupling between descriptors is naturally handled,
and it is not assumed that the activity is a linear function of the
descriptors. Also, recursive partitioning methods are not affected
by having large numbers of irrelevant descriptors, so descriptor
elimination is not necessary. The importance of a descriptor for a
random forest model may be gotten from the “out-of-bag” predic-
tions during model building (on the average bagging leaves out
about one-third of the cases). Each descriptor is in turn ran-
domly reassigned to the wrong case, and the accuracy of the
prediction (over multiple trees) is monitored. The out-of-bag
prediction accuracy will become much worse when an important
descriptor is permuted, but will change little when an unimportant
one is.

For our QSAR models, each atom was treated as a separate entity
with its own descriptors and binary response. Similarly each atom
was predicted as a separate entity. We generated the models using
100 trees; having more trees generally does not improve the
predictions.17 Predictions were returned as probabilities that a given
atom would be a site of metabolism, a number between 0 and 1.

Generally, when we speak of predictions in this paper, it will
refer to cross-validated predictions on the calibration set. Half the
molecules in the calibration set for a particular CYP were randomly
selected, and a QSAR model was constructed from the atoms in
those molecules. Then the responses for atoms in the remaining
molecules were predicted. This was repeated 20 times. The predicted
response for any particular atom is the mean over the number of
predictions for that atom, on the average 10 predictions for the 20
trials. At no time is a molecule being predicted represented in the
QSAR model doing the prediction. “Leave-half-out” is usually
considered a very conservative method of cross-validation, certainly
less likely to overestimate the goodness of prediction than leave-
one-out cross-validation.

For the external sets, a QSAR model was made from all the
compounds in the calibration set for a particular CYP, and atoms
in the molecules in the external set for that CYP were predicted
against it.

Measures of Goodness.One may quantitatively measure the
“goodness” of a model in a number of ways. Cross-validatedR2 of
the cross-validated predictions versus the observed responses is a
standard for QSAR, but this is not appropriate when the activities
are binary and we do not expect a particularly linear response.
Therefore, we use the following methods: (1) One may construct
Receiver Operating Characteristic (ROC) curves18 by ordering the
atoms in decreasing predicted probability of being an oxidation site
and monitoring how many true and false positives are found as
atoms are checked in that order. Here we will use “molecule-scaled”
predictions. The maximum prediction of all atoms in a particular
molecule is set to 1.0 and the lowest to 0.0, with the other atoms
linearly scaled between. For regioselectivity, where we are trying
to find the relative probability of oxidation for atoms within a single
molecule, this is more appropriate than using the raw predictions.
The ROC curve for the case where the predictions are perfect would
be the left and top sides of a square (area under the curve) 1.0),
and the curve for the case where the predictions are no better than
random would be a diagonal line (area) 0.5). Because the ROC
curve pools all atoms regardless of what molecule they are in, not

quite what is needed for regioselectivity, we need additional
measures. (2) In a “molecule-scaled prediction plot,” atoms are
plotted with their molecule-scaled prediction on they-axis and the
molecule they are from on thex-axis. Thus, all the atoms in a given
molecule are in a single column. Usually the molecules are arranged
left to right in order of decreasing Z-score. Z-score) (M1 - M0)/
S0, whereM1 is the mean prediction for the atoms that are oxidation
sites in the molecule, andM0 and S0 are the mean and standard
deviation prediction for the atoms that are nonsites. Because the
Z-score is characteristic of a single molecule, it does not matter if
one uses the raw or molecule-scaled prediction. The more positive
the Z-score, the better the discrimination of the sites from the
nonsites. A prediction that did not discriminate sites at all would
have Z-score) 0. One can use the mean Z-score over all the
molecules as a measure of goodness. (3) Often regioselectivity
models are measured by the percent of the molecules for which at
least one of thek atoms in a molecule with the highest predictions
is an observed oxidation site. Typically,k ) 2.

Comparison to Other Methods. We compare our current
method against the earlier model of Singh et al.7 and MetaSite,8

which at the time of writing is the only widely distributed package
for predicting regioselectivity. For the purposes of generating a ROC
curve for Singh et al. predictions, we ordered the nonhydrogen
atoms in order of increasing AM1 dehydrogenation energy. In
accordance with the model, if the maximum solvent accessible area
of all attached hydrogens was<8 Å2 or if there were no attached
hydrogens, the atom was given a dehydrogenation energy of 99
kcal/mol, an arbitrarily high number near the maximum dehydro-
genation energy, which serves to put such hydrogens at the end of
the sorted list.

A license for MetaSite was obtained from Molecular Discovery
(http://www.moldiscovery.com). Here we show results from version
2.7.5. MetaSite can handle sp3 carbons, sp2 carbons, sulfurs, and
aromatic nitrogens. We followed the default protocol: “reactivity
correction on” and a maximum of 20 conformations. MetaSite
produces a prediction for each nonhydrogen atom in each confor-
mation, but there are two types of scores averaged over the
conformations: averaged similarities and averaged ranking. It is
the latter that is recommended by the vendor to get the best
predictivity.

Results

Which Descriptors are Important? Building a QSAR model
involves relating the activity of interest (here the probability of
being an oxidation site) to the structure (here the attributes of
nonhydrogen atoms), which is represented as descriptors. In this
section, we explain which of the descriptors presented in the
Methods section are important for activity. Having tried a
number of descriptor combinations and checking the cross-
validated predictions with ROC curves, we settled on SS-A,
SS-B (substructure descriptors), HYDROGENAREA (exposure
of hydrogens), PE (physiochemical environment), and SPAN
(end-vs-middle) as a reasonable minimum combination of
descriptors that gives the best cross-validated predictions. SS-A
plus SS-B is slightly superior to SS, because making the atom
types in the substructure descriptors too specific hurts the ability
of the model to extrapolate, especially for the two smaller
datasets (2D6 and 2C9). We stay with HYDROGENAREA, the
solvent accessible surface area of each hydrogen averaged over
multiple conformations, to be consistent with our previous work.
However, using only a single conformation also gives reasonably
predictive models, as does using the area of the atoms of a
molecule from which the hydrogens have been deleted.

One way of appreciating the relative contributions of the
descriptors is to look at the descriptor importances in Table 2.
Descriptors that are on the average negatively correlated with
being an oxidation site (independently of the QSAR model) are
marked with *. Because random forest is not a linear method,
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one cannot always interpret a high importance for a descriptor
as suggesting that higher values of that descriptor mean a higher
probability of being an oxidation site (or a lower probability
for the descriptors marked with *). In some cases, it may be
that intermediate values of the descriptor give the highest
probability.

For 3A4, the most important descriptor is CX1sp3-NX3sp3,
which indicates that methyl groups adjacent to sp3 nitrogens
with three neighbors are the most likely sites of oxidation. This
is especially true if the nitrogen is a cation as shown by the PE
descriptor 1_1 (one bond away from a cation). This is not
surprising given thatN-demethylation is a widely observed
reaction of 3A4. HYDROGENAREA descriptors are im-
portant; as expected, the more exposure the better. SPAN_
RATIO indicates that atoms at the ends of molecules are more
likely to be oxidized than atoms in the middle. The importance
of SPAN descriptors is evidence that at least some orientation
issues are important for 3A4, contrary to the assumptions in

Singh et al. The oxidation of-S- (SX2sp3) is among the top
20 descriptors.

There are enough atoms in the 3A4 dataset that one can
further dissect the descriptor importances by generating a QSAR
model for only a subset of the atoms, here the sp3 carbons with
hydrogens and the sp2 carbons with hydrogens. The descriptor
importances for sp3 carbons with hydrogens resemble that for
the full set (not surprisingly, because they account for the
majority of the total atoms and 80% of the oxidation sites in
3A4) except that the relative importance of the HYDRO-
GENAREA terms becomes less. Some of the descriptors below
the top 20 are interesting relative to some of the systematically
wrong predictions of Singh et al. Descriptors number 21, 25,
and 26 are n-n-n, n-n-n-n, and n-n. They indicate that, among
sp3 carbons, oxidation is favored on nonring atoms. We believe
this reflects the fact that carbons in piperidines and piperazines
(among the most common aliphatic rings in drugs) are rarely
oxidation sites for 3A4 despite being adjacent to nitrogens.

Table 2. Twenty Most Important Descriptors for QSAR Models

descriptor importance descriptor importance

3A4 All Nonhydrogen Atoms 3A4 sp2 Carbon with H
CX1sp3-NX3sp3 19.304 5_2 0.990
HYDROGENAREA_SUMAREA 18.269 6_4 0.944*
1_1 15.726 7_3 0.902
CX1sp3-NX3sp3-CX1sp3 14.709 CX2sp2-CX3sp2-ClX1sp3 0.878
HYDROGENAREA_MAXAREA 14.368 a6-a6-a6-a6 0.844
HYDROGENAREA_MEANAREA 13.125 6_7 0.840*
HYDROGENAREA_MINAREA 12.349 6_8 0.821*
CX1sp3-NX3sp3-CX2sp3-CX2sp3 11.419 6_5 0.766*
SPAN_RATIO 10.523 3_4 0.755
CX1sp3-NX3sp3-CX2sp3 10.337 CX2sp2-CX2sp2-CX2sp2 0.713
HYDROGENAREA_NHYD 9.420 2D6 All Nonhydrogen Atoms
SPAN_MAXDISTMOL 7.294* HYDROGENAREA_SUMAREA 10.569
CX2sp3-NX3sp3-CX2sp3 7.020 HYDROGENAREA_MEANAREA 7.888
SPAN_DISTFURTHESTNEIGHBOR 6.810* HYDROGENAREA_MAXAREA 7.559
6_1 6.406* CX1sp3-OX2sp3-CX3sp2-CX2sp2 6.896
6_3 5.893* SPAN_RATIO 6.710
6_5 5.812* HYDROGENAREA_MINAREA 6.453
6_4 5.015* CX1sp3-OX2sp3-CX3sp2 5.507
6_6 4.959* HYDROGENAREA_NHYD 5.284
SX2sp3 4.881 CX1sp3 4.804

3A4 sp3 Carbon with H CX1sp3-OX2sp3 4.627
1_1 16.368 CX2sp2-CX2sp2-CX2sp2-CX3sp2 3.131
CX1sp3-NX3sp3-CX2sp3 11.224 6_1 3.055*
CX1sp3-NX3sp3 10.804 SPAN_MAXDISTMOL 2.816*
HYDROGENAREA_MEANAREA 9.568 6_3 2.720*
HYDROGENAREA_SUMAREA 9.549 CX1sp3-CX3sp2-CX2sp2 2.538
6_1 9.214* SPAN_DISTFURTHESTNEIGHBOR 2.531
CX1sp3-NX3sp3-CX1sp3 8.329 6_4 2.441*
SPAN_RATIO 8.132 n-n-a6 2.376
HYDROGENAREA_MAXAREA 7.620 4_1 2.337
HYDROGENAREA_MINAREA 7.438 6_2 2.216*
SPAN_MAXDISTMOL 6.862* 2C9 All Nonhydrogen Atoms
6_5 6.313* HYDROGENAREA_SUMAREA 7.104
SPAN_DISTFURTHESTNEIGHBOR 5.189 HYDROGENAREA_MAXAREA 6.227
CX1sp3-NX3sp3-CX2sp3-CX2sp3 4.998 HYDROGENAREA_MEANAREA 5.680
CX2sp3-NX3sp3-CX2sp3-CX1sp3 4.803 HYDROGENAREA_MINAREA 5.574
6_4 4.563* SPAN_RATIO 5.189
6_3 4.353* CX1sp3 3.729
6_2 4.320* HYDROGENAREA_NHYD 3.428
CX2sp3-NX3sp3-CX2sp3 4.310 SPAN_MAXDISTMOL 2.914*
6_8 4.168 CX1sp3-OX2sp3-CX3sp2-CX2sp2 2.777

3A4 sp2 Carbon with H 6_3 2.361*
REGIO8_MAXDISTMOL 2.278* SPAN_DISTFURTHESTNEIGHBOR 2.313
6_3 2.126* CX1sp3-CX3sp2-CX2sp2 2.164
HYDROGENAREA_MEANAREA 2.071 CX2sp2-CX2sp2-CX2sp2-CX3sp2 1.988
HYDROGENAREA_MINAREA 1.964 CX1sp3-OX2sp3-CX3sp2 1.975
HYDROGENAREA_MAXAREA 1.963 6_2 1.790*
SPAN_RATIO 1.887 6_8 1.690
SPAN_DISTFURTHESTNEIGHBOR 1.805* 6_1 1.689*
HYDROGENAREA_SUMAREA 1.696 6_4 1.642*
CX2sp2-CX3sp2-OX1sp3 1.476 CX1sp3-OX2sp3 1.614
6_6 1.053* a6-a6-a6-a6 1.603*
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For sp2 carbons with hydrogens, HYDROGENAREA terms
are still important for 3A4. The site adjacent to a phenolic
oxygen is especially favorable, as indicated by CX2sp2-CX3sp2-
OX1sp3 and 5_2 (two bonds from a donor/acceptor). SPAN
parameters are still important, although SPAN_RATIO is no
longer clearly the most important among them. The fact that
nearly all oxidation sites at sp2 carbons for 3A4 are on six-
membered aromatic rings is reflected by the descriptor a6-a6-
a6-a6.

For 2D6, HYDROGENAREA and SPAN descriptors are
clearly important. The most important substructure descriptors
(CX1sp3-OX2sp3-CX3sp2, CX1sp3-OX3sp3, n-n-a6, 6_4, etc.)
are all consistent with the very commonO-dealkylation of
aromatic methoxy by 2D6. There is evidence for oxidation at
thepara-position of aromatic rings (CX2sp2-CX2sp2-CX2sp2-
CX3sp2) and at aromatic methyl groups (CX1sp3-CX3sp2-
CX2sp2) as well. The putative 3D “pharmacophore” for 2D6
oxidation, where oxidation sites are expected to be 5 to 7 Å
from a cation,11 is not discernible as such, but the closest is the
22nd descriptor 1_8 (8 bonds from a cation). A through-bond
distance of 8 corresponds to a through-space distance of 7.8(
0.9 Å in CORINA-built structures, somewhat longer than
expected. If one builds a QSAR model for 2D6 using only
cationic substrates, the 1_8 descriptor is 13th in importance.

The set of top 20 descriptor importances for 2C9 qualitatively
resemble those for 2D6. We can discern no descriptor that
corresponds to a pharmacophore for 2C9.

Molecule-scaled cross-validated prediction plots are shown
in Figure 2 for the calibration set. If the models were perfectly
predictive, all the blue squares would be above all the red
squares. Clearly, prediction is far from perfect, but is reasonable.
For about two-thirds of the 3A4 molecules (Figure 2A), there
is a blue square at the top, indicating that the atom with the
highest molecule-scaled cross-validated prediction is indeed an
oxidation site. However, after that, the predictions tend to
degrade, and at the right side, the blue squares are toward the
bottom, indicating particularly bad predictions. Again for 3A4,
we can further dissect the plot by looking at subclasses of
potential sites. Figure 2B shows the plot for sp3 carbons with
hydrogens. It resembles the full plot, again not surprisingly,
because sp3 carbons account for a large majority of the oxidation
sites. Figure 2C shows the plot for sp2 carbons with hydrogens.
The model has more trouble predicting these than sp3 carbons,
that is, fewer blue squares are near the top. Figure 2D shows
the plot forsSs andsS(dO)s. The model does well here.
This is not surprising because whenever a potentially oxidizable
S appears in a molecule, it is likely to be an oxidation site for
3A4 (i.e., there are more blue than red squares), and any
statistical model is sure to incorporate that information. The
model correctly predicts 5 out of 10 aromatic nitrogen sites in
Figure 2E near the top of the plot. However, sp3 nitrogens are
poorly predicted, with most of the blue squares at the bottom.
Again, not surprising, because very few sp3 nitrogens are
oxidation sites.

The molecule-scaled prediction plot for 2D6 (Figure 2G) also
looks very good, with about two-thirds of the compounds having
a blue square at the top of the plot. The plot for 2C9 (Figure
2H) looks slightly less good, with only about half of the
molecules having a blue square at the top. Given that the 2C9
dataset is the smallest, it is not surprising that the cross-validated
predictions would be poorest. The dissections of 2D6 and 2C9
(not shown) are qualitatively similar to those for 3A4, except
that there are few or no examples of aromatic nitrogens or sp3

nitrogens being oxidation sites.

Examples of Well-Predicted and Poorly Predicted Mol-
ecules by Cross-Validation.Some example 3A4 molecules
from the left and right sides of the plot in Figure 2A are shown
in Figure 3A. We try here to show a variety of oxidation sites.
Not surprisingly, the molecules with the highest Z-scores have
commonly oxidized groups (N-alkyls, sulfur, etc.) and a few
aliphatic carbons among many aromatic ones. However, there
are other not so common cases (aromatic oxidations, aromatic
nitrogen oxidations) where the Z-score is reasonably high. It is
perhaps more interesting to look at the molecules where the
prediction fails. For instance, in lisofylline, the model would
not expect an aliphatic carbon to be oxidized when much more
attractiveN-methyl groups are present. The model expects-S-
to be easily oxidized in troglitazone, while the observed reaction
is a rare ring opening. Similarly, the model expects an sp3 carbon
near unsaturated carbons in zonisamide to be oxidized, not a
ring opening. Troglitazone is an example where, after our
citations had been compiled, a different citation with an
additional metabolite was brought to our attention. Reddy et
al.19 proposed that an S oxidation, the site predicted by the
model, leads to opening of the thiazolidinedione ring and
formation of a glutathione conjugate.

Figure 3B shows the same for 2D6. Again, not surprisingly,
molecules with aromatic methoxy and aromatic methyl have
the largest Z-scores, but sulfur oxidations andN-demethylations
are also observed. The model expects anN-demethylation
instead of a tryciclic ring oxidation in nortriptyline. Bortezomib
is unique in having a boron atom, so cross-validated prediction
from the other molecules is unlikely to predict it correctly. The
model expects atoms at the end of molecules to be oxidized,
all else being equal, hence, the misprediction forN-nitrosodi-
amylamine.

Figure 3C shows the same for 2C9. Again we see high
Z-scores for aromatic methoxy and aromatic methyl, with sulfur
oxidations andN-dealkylation. Again we have a problem with
bortezemib. Quazepam is another example of an almost unique
reaction that the model does not account for. Chlorpropamide
has an end-vs-middle misprediction.

External Set Compounds.Having external sets gives us a
chance to predict compounds that had no participation in any
QSAR model. Some well-predicted and poorly predicted
compounds are shown in Figure 4. There seems to be a similar
mix as with the cross-validated predictions: a few “easy”
examples with high Z-scores (e.g., BPU for 3A4, Foxy for 2D6),
some with moderate Z-scores (e.g., FLU-1 for 3A4), and a few
poorly predicted ones with negative Z-scores (e.g., methyleu-
genol for 2D6). As with the cross-validated predictions, some
of the observed oxidation sites are hard to explain. For instance,
given the high propensity of 2D6 forO-demethylation, one
expects the methoxy groups of methyleugenol to be the sites
of metabolism, but they are not noted as such.

Comparison with Other Methods for the Calibration Set.
ROC curves for the methods are shown in Figure 5 and measures
of goodness are given in Table 3. The appearance of the ROC
curves seems generally consistent with the table: the better the
ROC curve, the higher the other measures of goodness. The
Singh et al. model is strictly speaking applicable to 3A4 only,
but we include it for the other CYPs as well. For any of the
CYPs, the Singh et al. model has the worst ROC curve among
the three methods. This is not at all surprising because the model
is expected to work only on sp3 carbons with hydrogens. The
Singh et al. model seems to do much worse for 2D6 and 2C9
than for 3A4, probably because other factors than the lability
and exposure of hydrogens are more important for those CYPs.
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Figure 2. Molecule-scaled prediction plots for the cross-validated predictions. They-axis is the molecule-scaled prediction from 0 to 1. Atoms in
one molecule fall in a single column. Molecules are ordered from left to right based on the Z-score, how much higher the observed oxidation sites
(blue squares) are predicted relative to the other atoms in a molecule (red squares).
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Of the MetaSite predictions, averaged ranking seems the
better, consistent with the recommendations of the vendor. The
cross-validated predictions of the QSAR model for 3A4 are
clearly better than MetaSite for this set of compounds. For 2D6
and 2C9, the QSAR predictions are only slightly better than
MetaSite. The MetaSite authors claim that in a diverse set of
molecules they assembled, the oxidation site is in the top two
atoms in 78, 86, and 86% of the molecules for 3A4, 2D6, and
2C9, respectively.8 Because the authors did not release the

identities of the molecules in their set, we cannot verify this or
try our own method on their set. Using our own dataset, the
results for MetaSite in Table 3 are 62, 72, and 73%, respectively.

A detailed comparison of the predictions of the QSAR models
against MetaSite for any given molecule for any given CYP
shows that the predictions are very different. The correlation
of molecule-scaled predictions between the QSAR cross-
validated predictions and the MetaSite predictions is only∼0.5
for any of the CYPs. This is also true for all subclasses of

Figure 3. Example molecules in the calibration set that are well-predicted and poorly predicted in cross-validation by the QSAR models. Observed
oxidation sites are circled. The large arrow points to the atom with the highest cross-validated prediction in the molecule (molecule-scaled prediction
) 1). The smaller arrows are for molecule-scaled predictions>0.5. The number after the molecule name is the Z-score for that molecule. Molecule
nomenclature is from the original citations.
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oxidation sites (sp3 carbons, sp2 carbons, etc.) as well. Perhaps
this is not surprising given the methods use very different
approaches.

A big concern is whether the QSAR method may have an
unfair advantage over the other methods, because there are
similar molecules in the training set and the test set. One way
to evaluate this is to determine the relative contributions of close
analogs to the datasets. For instance, if we cluster (using the
method of Butina20) the 3A4 set at 0.7 similarity using the atom
pair descriptor,21 we get 243 clusters, of which 198 are
singletons. We see that the largest cluster (tricyclics) has seven
members, the next largest (benzodiazepines) has six members,
the next largest (steroids) has four members, and so on.
Similarly, the 2D6 set generates 105 clusters, with the largest
cluster containing five morphine analogs. The 2C9 set generates
81 clusters, with the largest containing four kaempferide analogs.
These clusters are small compared to the entire set. Also, for

the most part, each molecule in a cluster comes from a different
citation, so they are truly independent determinations. A stronger
argument comes from redoing the QSAR cross-validation on
“diverse” datasets that contain only one molecule from each
cluster, so that there is no possibility of a close analog of the
compound being predicted being included in the QSAR model.
The measures of goodness for the diverse datasets are in
parentheses in Table 3. There is a detectable decrease in the
measures, but the decrease is not substantial and the predictions
from the QSAR model for 3A4 and 2D6 remain better than
those from MetaSite.

We can also look into the question of why the QSAR
predictions for 3A4 seem to be significantly better than

Figure 4. Example molecules in the external set that are well-predicted
and poorly predicted by full QSAR models. The same conventions are
used as for Figure 3.

Figure 5. ROC curves (using molecule-scaled predictions) comparing
the cross-validated predictions of the QSAR model with predictions
from other models of CYP regioselectivity.
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MetaSite, while those for 2D6 and 2C9 are not. One possible
explanation is that because the 3A4 dataset is much larger than
the other sets, the models built during cross-validation contain
more information, and thus the cross-validated predictions are
likely to be better. One way to address this is to generate smaller
3A4 sets by randomly selecting 124 and 92 compounds (the
sizes of the other sets) and to repeat the 20-fold cross-validation.
When we do this, the ROC curve (not shown) for the cross-
validated QSAR predictions for 3A4 looks only slightly better
than the curve for MetaSite on the same reduced set of
compounds, much like the situation with 2D6 and 2C9. Thus,
the size of the dataset is at least part of the explanation.

Goodness Measures for the External Set.Measures of
goodness for the external sets are in Table 4. Because the
number of external compounds is small, one should not over-
interpret the results. However, the goodness measures for QSAR
predictions in this table seem about as good as the corresponding
measures in Table 3. We see that the QSAR predictions in Table
4 are on par with MetaSite predictions or slightly better, with
the Singh et al. methods doing more poorly (at least in ROC
area and Z-score). This is in general agreement with the results
in Table 3. Thus, there is no evidence that cross-validated
predictions and “real” predictions are fundamentally different
for these models.

Discussion

We have created a purely empirical model for CYP 3A4,
2D6, and 2C9 regioselectivity based on data from the literature.
In essence, we are asking “What would the literature predict to
be the oxidation sites in this molecule?” It should be re-empha-
sized that our model can predict only where a molecule might
be oxidized, assuming it is a substrate and cannot predict
whether a molecule will actually be a substrate of a CYP or
determine which CYP might be more important for the metab-
olism of a given molecule. Models of whether particular mole-
cules will be substrates or inhibitors of CYPs are under develop-
ment in this and other laboratories (reviewed by Lewis et al.22).

Given the potential difficulties mentioned in the Introduction
about combining the data of separate molecules, the QSAR
approach works remarkably well, making molecule-scaled
predictions at least as good as those from MetaSite, which is
much more mechanistically based (more below). This is true
even for the very conservative method of cross-validation we
use here. Using a less conservative cross-validation, for instance,
leaving only 20% of the molecules out instead of 50% makes
the results appear even better. A reasonable speculation as to
why the models work is that, if enough molecules are included,
the relative frequencies of atom environments appearing as
major oxidation sites of different molecules will eventually
reflect the relative probabilities of those environments being
oxidation sites if they occurred in the same molecule. This is
reasonable because most drug molecules contain a variety of
environments, for instance, they contain aliphatic and aromatic
portions.

The QSAR-based approach is one of a number of valid
approaches to the regioselectivity problem, and we know of at
least one example where a regioselectivity model was derived
from literature databases of oxidations.23 One advantage of the
QSAR-based approach is that, as long as the relevant informa-
tion is implicit in the descriptors used to build the model, it
does not require knowledge about which mechanisms are
important for regioselectivity or require that we undertake
computationally expensive simulations of each mechanism. The
downside of this, of course, is that our models contain no
mechanistic explanation, only a statistical summary of what is
already known. In our particular case, one strong motivation
for attacking the problem empirically was to avoid expensive
molecular orbital calculations altogether. On the other hand, any
kind of QSAR approach depends on having a large body of
data from which to calibrate a model, and it is never clear
whether the data is sufficiently unbiased or complete enough
to allow extrapolation far beyond the types of molecules and
atom environments the model was built on. (A specific corollary
to this is that models have trouble predicting the more rare

Table 3. Measures of Goodness for Regioselectivity Models for the Calibration Sets

CYP
method of
prediction

area under
ROC curve

mean
Z-score

% of molecules,
where top two
atoms contain
oxidation site

3A4 QSAR 20X cross-validated 0.924 (0.916)a 7.83 (5.85) 77 (74)
N ) 316 Singh et al. 0.803 (0.796) 1.08 (1.05) 51 (50)

MetaSite averaged ranking 0.853 (0.854) 2.72 (2.79) 62 (61)
2D6 QSAR 20X cross-validated 0.931 (0.927) 9.32 (8.05) 72 (70)
N ) 124 Singh et al. 0.735 (0.746) 0.86 (0.87) 24 (25)

MetaSite averaged ranking 0.891 (0.886) 3.47 (3.39) 65 (64)
2C9 QSAR 20X cross-validated 0.894 (0.855) 6.74 (5.06) 73 (68)
N ) 92 Singh et al. 0.783 (0.785) 1.10 (1.11) 31 (33)

MetaSite averaged ranking 0.862 (0.862) 3.26 (3.06) 69 (66)

a Number in parenthesis is for the corresponding diverse dataset.

Table 4. Measures of Goodness for the External Sets

CYP
method of
prediction

area under
ROC curve

mean
Z-score

% of molecules,
where top two
atoms contain
oxidation site

3A4 QSAR full model 0.901 7.61 84
N ) 19 Singh et al. 0.797 1.03 58

MetaSite averaged ranking 0.853 1.94 58
2D6 QSAR full model 0.934 17.90 70
N ) 10 Singh et al. 0.842 1.38 50

MetaSite averaged ranking 0.949 3.38 70
2C9 QSAR full model 0.937 7.43 67
N ) 10 Singh et al. 0.866 1.50 67

MetaSite averaged ranking 0.920 3.06 67
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reactions, e.g., ring openings in 3A4.) Noise in the data is always
an issue unless there are a sufficient number of cases such that
the noise can be averaged out. For all these reasons, QSAR
models are limited to those CYPs for which a great deal of
regioselectivity data is already available, currently only 3A4,
2D6, and 2C9, and 2C9 is probably a borderline case.

While we have tried to be inclusive of all the data in the
literature, it is possible to argue that the data sets we have
assembled here, while diverse overall, may not be representative
of drugs in general. This is to some extent unavoidable because
by definition the datasets contain only known substrates for each
CYP and are thereby enriched in specific chemical groups. For
example, the 3A4 set contains moreN-alkyl amines, and the
2D6 set contains more aromatic methoxy groups and cations
than expected in a randomly selected set of drug molecules of
the same size. We do not feel that the bias is hurting the
applicability of the model, especially because the assumption
of the model is that any molecule to be predicted already is a
substrate. In any case, as more data is generated in the literature,
the datasets will likely become more inclusive and less biased.

MetaSite8 provides an interesting contrast to our empirical
approach in that it does not depend at all on having pre-existing
data, but is based on first-principle arguments. It makes its
predictions based on the lability of hydrogens plus orientation
effects based on the 3D structure of a CYP active site.
Specifically, this is done by matching the intramolecular
environment of a candidate atom in a molecule (encoded by
atom types and distances) to the active site environment around
the heme oxygen in a CYP active site, with atoms that more
closely match the heme environment presumably being the
ones most likely to be oxidized. Currently, MetaSite can
handle 3A4, 2D6, 2C9, 1A2, 2C9, and 2C19 and can be
extended to any CYP for which a homology model can be
generated. Clearly, MetaSite has the advantage for 1A2 and
2C19, where there is not currently enough data in the literature
to generate a QSAR model. There are other methods, which
we did not examine, that predict regioselectivity by explicitly
docking potential substrates into the active sites of CYPs. Zhou
et al.9 have discussed the GLUE method for predicting 3A4
regioselectivity, and de Graaf et al.10 discuss a docking method
for 2D6.

The influences on regioselectivity are usually thought to have
two components, the local reactivity of the atom to be oxidized
and “orientation” effects that make broad regions of the molecule
more or less likely to be attacked. We concur with the MetaSite
authors’ conclusion that orientation issues are important in all
CYPs, though perhaps not as much for 3A4. In the case of
MetaSite and the docking-based methods, the orientation
information is provided by an active site model. One can expect
that the results of such models will depend on which specific
active site structure is used, and one can also argue that having
a single explicit structure for the active site of a CYP would
not necessarily provide all the needed orientation information,
because CYPs, oxidizing a very wide variety of substrates, are
likely to have very flexible active sites that can change shape
to adapt to specific molecules. Ekroos and Sjogren13 have
recently confirmed this for 3A4 by X-ray crystallography. The
fact that our QSAR models do at least as well as MetaSite,
suggests that, given a large amount of regioselectivity informa-
tion to calibrate against, it is not necessary to use explicit CYP
active site structure to get reasonable predictions.

Our QSAR model looks only at aspects of the substrate
molecules, but we did try to relate the important “environment”
descriptors in our QSAR models to the active site structures of

the CYPs. Not surprisingly in retrospect, we were not able to
do so except in a very broad sense. The active sites of the CYPs
examined here are of limited size, and some longer molecules
cannot fit into them, so it is not a surprise to see for all CYPs
that molecules are more likely to be oxidized at the ends than
in the middle. The only specific active site feature we can
discern is the presence of an anionic residue in the active site
of 2D6 influencing the regioselectivity of cationic substrates.

It should be noted that because neither our model nor
MetaSite can explain more than about 70% of the regioselec-
tivity data in the literature (assuming the literature data is for
the most part correct), some critical information is likely missing
in current modeling efforts and more work is needed. Certainly,
at present, it makes sense for a chemist to look at predictions
from all available methods.
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